skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flores_Azua, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In response to growing environmental concerns regarding the presence of per- and polyfluoroalkyl substances (PFAS) in landfills, this study explores PFAS permeation through pinhole defects of high-density polyethylene (HDPE) geomembranes (GMs) experimentally. Specifically, this study aims to: (i) investigate the adsorption of PFAS onto HDPE GMs, (ii) evaluate the effectiveness of GMs experimentally in retaining PFAS-laden leachate in the event of a puncture failure, (iii) assess the critical conditions leading to puncture failure of GM using mechanical characterization testing with complementary finite element method (FEM) analyses with the input data from mechanical characterization. Our findings show limited intermolecular attractive interactions between PFAS and GMs, and surfactant properties of PFAS contribute to higher leachate permeation through pinholes. In general, highly fluorinated, short chain PFAS exhibit increased permeation rates, which was attributed to their size and greater propensity to align at the water-air interface. This study underlines the environmental implications of PFAS-laden leachates especially when there are no proper liner systems or leachate collection systems in place underscoring the necessity for modern landfill design and management practices to mitigate environmental risks associated with PFAS. 
    more » « less
    Free, publicly-accessible full text available December 15, 2025